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A single-particle model of molecular vibrational states is proposed in which 
the normal modes are projected out of the body vibrations of an infinite 
simple harmonic sphere. This model assigns the spurious change of mass or 
centre of mass and leads to removal of mass monopoles and dipoles from 
the system. These conservation conditions impose strict boundary conditions 
on the potential and basis functions. On incorporation into the model they 
result in a set of loop equations in which the potential is proportional to the 
fundamental vibration. The simplest solutions to these equations strongly 
resemble the Poschl-Teller generalization of the Morse potential. The sol- 
utions have been extended to incorporate the repulsive states and generate 
the set of net attractive states appropriate to the anharmonic potential. 

The basis functions of this potential display both angular and radial node 
structures. The degeneracies between radial and angular mode patterns can 
be studied by transformation into an angular coordinate space. In this way 
coupling to other phenomena described in similar angular momentum space 
can be performed directly before subduction to real displacement space. 

Key words: Subduction - Molecular vibrations - Momentum point groups. 

1. Introduction 

The starting point of normal mode analysis in a molecular system is the set of 
degrees of f reedom of its constituent atoms. If present, symmetry elements are 
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very useful to normalize this set by finite group projection techniques. Finally 
the external degrees of f reedom, describing translations and rotations, are elimi- 
nated f rom the result [1]. 

In this approach the whole is realized by construction from its parts. Interestingly 
the mirror image of this analysis can be envisaged as a valuable alternative 
treatment:  in this process the molecule itself is considered as a subsystem of a 
more  integrated whole. It  receives its characteristics by subduction f rom the 
properties of the parent  ensemble. Especially for molecules with high, spherical- 
like symmetry  - such as transition metal  complexes or boron hydrides - this 
approach can be expected to offer a successful description. 

Vibronic selection rules for chromium(III)  compounds have been recently 
obtained according to these principles [2]. Similar lines of thought are much 
more  often encountered in the description of electronic structure, ranging f rom 
ligand field theory [3] to electrons in a box or ring models. 

A recent example of these cage models is the subduction of molecular orbitals 
for metal  clusters f rom the modes of an electron on a sphere [4]. Orbital 
coefficients for the finite system receive the value of the spherical wave functions 
on the site of the atoms. 
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Fig. 1. The relationship between stretchings of an octahedral frame and the tr-orbitals for an 
octahedral cluster, as obtained in Ref. [4] 
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The cluster orbitals, obtained by Stone, can immediately be related to the 
vibrational modes of an octahedron. Fig. 1 shows the correspondence between 
the cr-orbitals of the cluster and octahedral stretching modes. Positive orbital 
coefficients are simply replaced by inward motion, arrows pointing away from 
the centre being attributed to negative lobes. In the same way the bending modes 
can be obtained from the 7r-symmetry orbitals, based on vector surface har- 
monics. (The latter also describe the rotational degrees of freedom.) 

In Fig. 1 capital letters (S, P, D .  �9 .) are used to designate the spherical symmetry 
parentage. This paper intends to examine whether the sphere indeed offers the 
appropriate symmetry to characterize vibrations. Two problems are at the basis 
of the present analysis: 

(1) the apparent dichotomy between stretching and bending modes and 
(2) the observed selection rules for vibronic transitions. 

2. Qualitative Considerations 

Internal coordinates are often divided into two classes, stretchings and bendings, 
that change respectively bond lengths and bond angles. This distinction silently 
suggests that there are different restoring forces. As an example, in a transition 
metal complex force constants for stretchings are assumed to contain information 
on metal-ligand bond strengths, whereas bending frequencies are expected to 
be determined more likely by interligand repulsion. 

However, in real molecules equisymmetric bending and stretching modes do 
interfere. A clear example is provided by the tl,-asymmetric stretch and the 
hu-buckle mode in an octahedral complex [5]. In both cases bond lengths and 
bond angles vary simultaneously (see Fig. 2) so that the pure antisymmetric 
stretch, as represented in Fig. 1 is a unilateral idealization. 

A treatment that regards molecular vibrations as fragmentary remnants of 
continuous functions, can therefore only be successful if in the course of the 
reverse process, from a finite molecule to a vibrating continuum, the bending 
and stretching components of one single mode will grow to respectively angular 
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Fig. 2. Octahedral h . -normal  modes. Spherical symmetry labels taken from Ref. [5] 
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and radial parts of one and the same function. Spherical symmetry can only 
characterize the angular part and is therefore but an intermediate step in the 
subduction chain. 

To illustrate this point more clearly, and in view of the subsequent treatment, 
we will offer a brief description of a model continuum with spherical symmetry. 
Consider a thin spherical shell of gas, contained between two concentric rigid 
boundary layers. The density at a certain point in the shell will be denoted p (r). 
All points can be considered to be at the same radial distance from the centre. 

Small oscillations in density are given by 

p(r)=po+Sp(r) (1) 

where P0 denotes the average density of the medium. 

It is a standard result in acoustics that these oscillations can be described by the 
usual spherical harmonics, Yl,,~, multiplied by an amplitude, Atm~(t), that changes 
harmonically in time 

6p (r)po Ylm~ (0, q~)Alm, (t). (2) 

In fact this problem is completely analogous to the flooded planet case; density 
oscillations of a gas in a rigid cage being transformed into volume changes of 
an incompressible liquid on the surface of a sphere [6]. Eq. 2 can be interpreted 
as follows: in some regions gas is rarified while it is condensed in others, mass 
flowing back and forth between these. Motions are evidently wholly tangential 
to the sphere and therefore mimic bendings. The model is illustrative in that it 
also explains why bendings and stretchings are coupled. Indeed mass is alternately 
accumulated and removed at certain poles, exerting varying pressure on the 
walls. A more general model naturally would have to account for surface 
expansions or inflections. A model continuum that provides a unified picture of 
stretchings and bendings is therefore a solid body. 

Vibrations of solid bodies are especially important in the theory of sound and 
have been studied extensively in the past, notably by Rayleigh [7] and Lamb 
[8]. Recently these simple dynamical models have received new attention in the 
study of nuclear structure [9, 10] (Liquid Drop Model), and it was suggested 
[2] that they might provide a useful clue for the present problem too. Classically, 
two types of motions are distinguished, surface modes (generated by surface 
tension) and compressibility waves (due to density changes). Especially the latter 
waves will be studied in more detail, since they provide insight in the characteris- 
tics of a vibrating continuum. 

3. The Liquid Drop Model 

3.1. Surface Modes 

A vibrating nucleus is not unlike a finite liquid drop and some features of its 
low lying vibrational states have indeed been related to classical results [10]. 
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Fig. 3. Harmonic  vibrations of a liquid drop (taken 
from ReL [10]). The states at 2hto 2 energy are two- 
phonon  excitations 
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An incompressible liquid drop, subject to a certain surface tension will perform 
surface oscillations, represented by the usual spherical harmonics. However, the 
p-mode corresponds to a centre-of-mass motion of the whole system and con- 
sequently the classical approximations predict for this mode zero frequency [7]. 
Assuming dassicaUy obtained frequencies to be a measure for energy of a 
particular vibration, the lowest lying states can be represented as in Fig. 3. Indeed 
especially the spherically symmetric nuclear ground states exhibit a pattern of 
low lying states that resembles Fig. 3. An assessment of electromagnetic transition 
rates in this scheme is difficult, though it appears that both the quadrupole and 
the octupole transitions will be enhanced. The dipole is absent because it 
corresponds to the physically spurious centre-of-mass motion. The vibrational 
model assumes charge and mass densities to be proportional. Oscillating charges 
that interact with the electromagnetic field are therefore at the surface of the 
nucleus. Notice that as in Fig. 3, in the flooded planet case the first excited mode 
is the quadrupole oscillation, as exemplified in the tidal waves. 

3.2. Compressibility Waves 

Besides surface modes, space filling matter also exerts compression modes [9], 
governed by density changes over the entire volume. The simplest possible 
homogeneous and isotropic medium, capable of these oscillations is a compress- 
ible liquid or gas, characterized by a single fundamental constant, the so called 
compressibility coefficient [6], that relates excess pressure (6p(r)) to changes in 
density (6p(r)). 

The coefficient will be denoted y 

~p/8o = ~po/oo. (3) 

The compression modes of a drop correspond to sound waves in a spherical 
cavity. There is no need to comment on the thermodynamic validity of Eq. (3). 
The reference to acoustical waves in a medium only serves as a simple physical 
background for the model. All that really matters is that any change in density 
provokes a pressure variation, causing a local restoring force. The constants of 
Eq. (3) will always appear as a product with the dimensions of a velocity to the 
second power. It will be represented by (uc)2, classically considered as the velocity 
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of sound 

u~ = ~,pp/po. (4) 

Compression modes have received less attention in nuclear physics, since they 
occur at much higher energies, where other phenomena are important. A more 
elaborate treatment is therefore presented. 

The density variations will be written as a product: 

8p(r) = poA(t)~(r).  (5) 

The only factor that interests us here, is the r -dependent  function ~.  We have 
already considered the case of a spherical shell, where ~ was a spherical harmonic 
(Eq. 2). Here  qb is obtained as a result of the wave equation in three dimensions 

V20 + (2try~ 1Ac)2f~ = 0 (6) 

where V 2 is the Laplacian and v the frequency. The solutions of this equation 
are the half integer Bessel functions ~r of order 1 + 1/2 

cb = Ylm,(O, ~)r-1/2Jt+l/2 (r2rrv/uc). (7) 

The boundary conditions at the surface of the cavity will only allow a quantized 
set of frequencies. Thus a new radial quantum number n is introduced. Several 
boundary conditions can be envisaged. 

Since no density changes can be found outside the cavity, a boundary condition 
that matches continuity will require that O(r) becomes zero when r reaches the 
surface (r = a) 

~(r)lr=o = o. (8) 

From Eq. (8) a spectrum of quantized frequencies results, determined by the 
positive zero's of the appropriate Bessel functions. (The same eigenvalues are 
also obtained in the quantum mechanical description of a particle in a spherical 
box, see Ref. [6]). 

For an s-mode (l = 0), we obtain from Eq. (8): 

2rrv/uc = nrr/a (n = 1, 2, 3 '  �9 �9 ). (9) 

(Subsequently we will use a shorthand notation k = 2try~ uc.) 

The resulting wave functions confront us with a paradox. It can be shown that 
none of these conserves mass. Indeed at any time the mass conservation condition 
requires: 

v P d V  =ooV (10) 

where integration is over the volume of the cavity. 
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Combining Eqs. (1), (5) and (10) we obtain a more convenient form of mass 
conservation 

v C b , t m , ( r )  d V  = O. (11) 

This equation states that the total change of mass in the cavity equals zero. 
Whenever  l__.>_ 1, i.e. for all solutions having angular nodes, this equation is 
certainly obeyed, since the angular part of the integral vanishes. Only for 
s-modes, conservation of mass depends on the radial part of the volume integral. 
Realizing that the radial part of qb is a solution of the radial wave equation, we 
can easily perform integration 

1/2 = - l / k 2 .  r27- r- o~l/2(kr) 
or 

(12) 

Eq. (12) is only a special case of Green's  theorem that a volume integral can 
be replaced by a surface condition. Using the recurrence relations for Bessel 
functions, thus surface condition takes a very simple form: 

8 -1/2 
- -  r J l / 2 ( k r )  = - k r - 1 / 2 J 3 / 2 ( k r ) .  (13) 
ar 

Hence the mass conservation of the s-modes depends on the value of the p-modes  
at the boundary. Obviously, if the k-values are chosen according to Eq. (9), so 
that the s-modes go to zero at the surface, the p-modes  with the same frequencies 
will not have roots at r = a, since the positive zeros of Bessel functions with 
subsequent orders are interlaced [11]. This clearly demonstrates that none of 
the s-modes, as obtained from the usual boundary condition in Eq. (8), will 
conserve mass. 

The Liquid Drop Model removed this contradiction by taking into account small 
surface displacements, as a consequence of the non-vanishing radial flux of qb 
at the boundary [9]. The boundary condition as such thus did not reflect the 
required conservation properties. Since it is our aim to study continuous poten- 
tials that can replace the actual boundary requirements, explicit incorporation 
of the conservation properties in the space of interest is needed. In keeping the 
domain of the wave function well defined, mass can only be conserved by altering 
the boundary condition for the s-modes, so that: 

a 
qbn00[ 0. (14) 

~ r  I r=a 

This condition states that there is no mass flow through the boundary, which 
would be the case for a gas in a rigid container. The above condition can be 
generalized, so as to conserve not only mass, but any a th-order  moment  of the 
system (for mass a = 0, for the centre of mass a = 1 etc . . . .  ). 
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In general the conservation condition for the Ath-order moment takes the 
following form: 

Iv Y*m~ rX ~nl,,, dV =SxtSm~ml x+2 -1/2 r r ~l+1/2 (kr) dr = 0. (15) 

If the Kronecker deltas in this expression are equal to one, the radial part 
becomes the determinant of the integration. 

foarX+2r-1/2~x+l/2(kr) dr=-rX+2/ka( 8~--~-Ir-1/2~,+l/21 =0. (16) 
I \ o r  r /  I r = a  

The boundary condition that will conserve the Ath -moment thus requires that 
the radial part of the s-modes obeys Eq. (16). The usual classical boundary 
condition for a medium in a rigid container only considers the term in 8/8r [12]. 
The operator in Eq. (16) is a generalized momentum operator, also taking into 
account the centrifugal forces to be associated with a wave that carries angular 
momentum. 

Furthermore these generalized momentum operators act as shift operators [13]. 
From the Bessel equation the following relations are  easily found: 

8 l 1/2 
- 1 / k ( ~ r - r ) r -  ~1+1/2-~r-1/2~1+3/2 

(17) 

1/k(~r+l + e)r-1/2~Ct+l/2 = r-~/2Jt_l/2. 

The operator which occurs in Eq. (16) is thus recognized as a ladder operator, 
increasing the order of the Bessel function by one. Hence as a general result 
one can state: 

"The Ath-order moment is conserved if radial quantum numbers of the A-modes 
are determined by the positive zeros of the (A + 1)-modes." 

3.3. Results 

From the foregoing treatment two different types of boundary conditions resul- 
ted, the radial quantum number of the Ath-mode being determined by the roots 
of either Jl+l/2, or •i+3/2. 

The resulting energies of the /-modes in the latter scheme are thus exactly 
degenerate with the (l + 1)-mode energies in the former scheme. 

What scheme shall we adopt? The consideration of the degree-of-freedom rule 
provides the answer. 

First of all, mass has to be conserved, therefore, the totally symmetric modes 
obey the second criterion. Furthermore, there is no restoring force for transla- 
tions. Hence the p-modes also have to obey the second criterion, in order to 
conserve the first moment, i.e. the centre of mass. But now all external degrees 
of freedom have been removed. The higher moments are left as internal degrees 
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Uniform boundary type Mixed boundary type 
(Eq. 8) sp modes Eq. 16 
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Fig. 4. Frequency pattern for two types of boundary conditions, s, d, g �9 �9 modes have even parity, 
p, f, h . . .  modes are odd. Only one-phonon states are shown. The Is) and IP) states from the 
right-hand side diagram are degenerate with ]p), resp. Id) states in the uniform-boundary type 

of freedom and therefore follow the first boundary condition. The result is thus 
of the mixed boundary type. 

Fig. 4 displays the change in frequencies upon removal of zeroth and first 
moments. Its left-hand side shows the frequency pattern for a uniform boundary 
requirement, where all modes vanish at the surface. In the right-hand side of 
the figure zeroth and first moments have been removed so that s- and p-modes 
are shifted in frequency to the level of respectively p- and d-modes of the 
uniform scheme. The result is not too different from the surface mode distribution 
in Fig. 3. 

The uniform pattern in Fig. 4 shows remarkable agreement with the spectrum 
of the spherical harmonic oscillator [14] with symmetry group U(3). Although 
the degeneracies of this group are not exactly reproduced in a finite cavity, all 
even modes tend to have frequencies which are whole integral multiples of the 
fundamental, whereas the odd modes approach half integral multiples of the 
fundamental [6]. 

3.4. Discussion 

(1) Degrees of Freedom 

The adaptation of the s-modes corresponds to the scalar degree of freedom. Its 
analog in the conventional treatment of an N-atom molecule is the number of 
particles involved. 
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The vectorial property associated with the p-modes, refers to the three transla- 
tional degrees of freedom. 

^ A A 

The representation of the rotor (s which is a gerade p-mode  is lacking 
in the energy scheme. Indeed a sphere is rotationally invariant. Transversal 
modes, which travel around an axis of revolution are exactly degenerate with 
those that travel in the opposite direction. Therefore,  they can be transformed 
into standing waves, without altering their energy. This is not the case for 
longitudinal waves which incorporate translations. 

The spurious states were thus seen to be embedded in the entire manifold of s- 
and p-modes. The boundary condition acted as a projection operator.  It removed 
the degrees of freedom required, simultaneously reorthogonalizing the remaining 
basis functions, as will be shown in the next section. 

(2) Dimensions of the Solution Space 

Consider the set of all Bessel functions of a particular order that are obtained 
by the requirement that qb vanishes at the surface. We can denote this set as 
follows: 

{~1+1/2 (kr)l~'+'~(k'~176 (18) 

The ka values are the positive zeros of ill+l~2 (kr). This set is known to form a 
complete space, i.e. any arbitrary f(r), which is well behaved in the interval 
[0, a], can be described through an expansion in this space. The above set is 
therefore often called a Fourier-Bessel series. 

The root defining condition, which acts as a transcendental equation accompany- 
ing the wave equation, was put in a more general form by Dini (see Ref. [11]). 
Using the notation of Watson, we can denote Dini's series as follows: 

I k ~ ' ( k ) + H f l ' ( k ) = 0 1  (19) 
v(kr) I ~ ] 

where v stands for the order of the Bessel function, the prime denotes the first 
derivative with respect to k and H as a constant. These authors have put the 
boundary at r = 1. 

Generalizing the equation for a boundary at r = a, we obtain the condition: 

~r fl~ (kr) + H~v (kr) ,=a = 0. (20) r 

On the other hand the boundary condition (Eq. (16)), which was used for s- and 
p-modes,  can be written as follows: 

8 lx ~/2 ~r-r)r-  fll+~/2(kr)=r-a/2[r~rflt+l/2(kr)-(l+l/2)fl,+l/2(kr)]. (21) 

Comparing Eqs. (20) and (21) we can at once identify H as being equal to - v  
in the present problem. Quoting Watson [11], "in this case a peculiar 
phenomenon occurs, which has no analogue in the theory of Fourier-Bessel 
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expansions". Indeed in this case k = 0  is also a root of the transcendental 
equation, which is not considered in the set of Eq. (19). The series obtained by 
this type of boundary condition are therefore almost complete; one term still 
has to be added to make an arbitrary function describable in this set of solutions. 
This term can of course at once be determined as the degree of freedom, which 
was removed by this type of boundary requirement. The appropriate expression 
is given by Watson. 

Generalizing his result to a boundary at r = a, this initial term takes the form: 

2 (v+  1) f f  a~+2 r ~ t~+af ( t /a )  dt  (22) 

where f ( r )  stands for the arbitrary function to be expanded. If one wants to 
conserve the Ath-order moment,  this function takes the form r ~+1/2 (see Eq. 15). 
With v = A + 1/2, one can calculate the above initial term: 

2 ( v + l ) r  ~ f~  �9 t~ 
a ~+2 J0 t --aV d t  = r ~ - f ( r ) .  (23) 

As can be seen from Eq. (23), the initial term already carries the whole function. 
There  is no remainder left to interact with Dini-Space. 

In this sense none of the p-modes  will show interference with a dipole. The 
conclusions of Fig. 3 thus seem to prevail also in this case: the scattering of 
waves will occur through the quadrupole mode, while "resonant"  absorptions 
correspond to the octupole. 

Finally the above analysis points out that the spurious mode is not really 
" removed" .  It corresponds to a root at the origin, i.e. at zero energy, where the 
system is at rest. 

4. The Quantum Mechanical Model 

4.1.  G e n e r a l  Fea tures  

The Liquid Drop Model represents a mixture of classical and quantum mechanical 
terminology. Waves are interpreted in a classical way as density changes in a 
continuous medium, but their frequency pattern is transformed to an energy 
spectrum. 

It is tempting to eliminate this ambiguity by associating a quantum mechanical 
pseudo article - a vibron as we may call it - with density waves. Moreover  a 
suitable potential function, V ( r ) ,  could be introduced to remove the boundary 
conditions of the previous treatment.  To carry the acoustical metaphore one 
step further, one could think of a distance - dependence in the velocity of sound, 
so that the transmittance of sound gradually fades towards limiting distances. 

The constants, encountered so far, have their analogs in the quantum mechanical 
treatment.  The medium dependent  constant, uc, which proved to be a scaling 
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factor for frequency, is now replaced by h2/2m, which is the scaling factor for 
energy. The surface radius, a, which could be looked upon as the scaling factor 
for space will similarly have its analog in the parameters that help define the 
potential energy function. 

We will adopt the convention to express all energies (the potential function 
included) in units of h2/2m, so that we can write the wave equation as follows: 

V2f~ - Vf~k + EIJ~--= O. (24) 

Having established the correspondence between the two terminologies, attention 
should be focused on the differences. If we want to construct a system with only 
internal degrees of freedom, the conservation conditions of the preceding section 
have to be restated in a quantum mechanical language. It should be realized 
that their classical form makes implicit reference to a ground state at rest. This 
state is the completely valid fundamental description of the system. Its mass is 
defined and so is its motion with respect to an external coordinate system. The 
conditions of conservation made certain that not a single excited state will alter 
these characteristics. 

Excited states are not allowed to show net density changes or centre-of-mass 
shifts, with respect to the ground state. Hence they are defined in an internal 
coordinate system. In quantum mechanics a zero-point energy remains present 
in the fundamental mode. Therefore in a quantum mechanical sense, this ground 
state, being denoted 10), must explicitly feature in the conservation conditions. 
Writing excited states as Iqb), the removal of the Ath-order must be written: 

I0) = o. (25) 

Since all excited states are orthogonal to the ground state, the zeroth-order 
moment has not changed. However, the dipole transition moment must be 
eliminated in order to transform the system to translationally invariant internal 
coordinates. Indeed translation of mass in a dipole causes translation of the 
centre-of-mass (see Ref. [1]). 

4.2. The Harmonic Oscillator 

As noticed before [1, 15], all vibrations of a solid body can be accommodated 
in the unitary group in three dimensions U(3), which is represented by the 
spherical harmonic oscillator. The removal of the centre-of-mass motion in this 
group poses no problems. Indeed the product rl0), featuring in Eq. (25) for A = 1, 
is the radial function of the fundamental p-mode. Evidently all other p-modes 
will obey Eq. (25), since they are orthogonal to the origin of the p-series. In 
other words: the whole dipole strength for transitions from the ground state is 
concentrated in the first quantum jump. After removal of this fundamental 
p-mode, no reorthogonalization of the remaining basis is needed. 

The assignment of the first p-mode as the physically spurious state fully coincides 
with more elaborate nuclear shell models [10]. Similarly, according to these 
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models, removal of this mode eliminates dipole transitions in the low energy 
region, and the main oscillator strength is attributed to the octupole transitions. 

Moreover, using Eq. [25], a simple assessment can be made of Irvine's remark 
that "the removal of spurious centre-of-mass motion in any single particle 
representation, other than that of harmonic oscillators, is extremely complicated" 
(quoted from Ref. [10], page 263). 

Indeed, consider a simple linear oscillator 

(-~x2 + V(x)-E),d~>=O. (26) 

Once again the condition for centre-of-mass conservation can be looked upon 
as an orthogonality requirement. Suppose therefore that the product x[0) obeys 
the same wave equation as [qb>, with a different eigenvalue, say E'. After 
factorization this equation becomes: 

dx 2 x dx ~ V(x ) -E '  10> = 0. (27) 

But 10) also obeys the basic equation, Eq. (26), being the fundamental mode 
with eigenvalue E ~ Combining both differential equations, one obtains: 

or: 

10)-exp ( - (E ' -E~  (28) 

This solution is recognized as the fundamental mode of the harmonic oscillator. 
Hence only in this case is orthogonality of the remaining basis automatically 
achieved. 

In summary, the U(3) group, less its first p-mode, represents the single-particle 
model of a vibrating system. Its states can be thought of as orbitals, corresponding 
to the normal modes of a many-particle system. De facto, all these normal modes 
will be internalized, since the spurious centre-of-mass motion has been removed. 
The resulting system will not contain a mass-dipole-moment. 

Now, as far as electromagnetic transition processes are involved, two extremes 
must be considered. If charge and mass densities are proportional, the absence 
of a mass dipole will include the absence of a charge dipole moment, hence the 
first ungerade internal transition moment available is the octupole moment. This 
is the case for low lying nuclear vibrational states, and confirms the predictions 
of the Liquid Drop Model. On the other hand, if charge and mass density 
distributions do not follow each other, internal modes that leave the centre-of- 
mass density unchanged, could well correspond to polarization of charge density 
according to a charge dipole moment. Indeed dipole transitions are observed in 
nuclear vibrational spectra too, though they occur at much higher energies [10]. 
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These two extremes, which are distinguishable in nuclear spectra, can provide 
a new perspective on the problem of molecular vibrational intensities. In a 
molecule certainly mass and charge densities do not map onto each other, and 
conservation of the centre-of-mass therefore does not imply the absence of 
dipole transitions. However, energy considerations may indicate that in the case 
of strong vibronic coupling only weak polarizations could result, in comparison 
to octupole moments, though the latter modes are orders of magnitude less 
intense, for a similar extent of polarization. These considerations do stress the 
important role of the many-electron density distribution in the calculation of 
vibrational transition intensities and offer some insight into the difficulties these 
calculations involve. 

5. The Loop Equations 

5.1. Deviations from Hooke's Law 

The harmonic oscillator provides the highest symmetry group for a vibrating 
body and therefore acts as parent group. On the other hafld it is equally true 
that all real oscillators are to a certain extent anharmonic. However, as an 
apparent rule, the shape of their potential is remarkably common to all oscillators, 
no matter what the actual value of the force constants involved may be. 

Two formidable questions can be raised in this respect: 

(1) Does the apparent rule of a rather specific anharmonic behaviour - perhaps 
best described by the Morse potential - point to a simple physical requirement, 
inherent to oscillators? 
(2) How can a complete description of real oscillators be realized by a descent 
in symmetry from the parent group? How should U(3) quantum numbers be 
used to characterize anharmonic functions? 

The development of a general description for anharmonic oscillators would 
undoubtedly greatly benefit from eventual insight into the observed deviations 
from Hooke's Law. In our view the emerging picture seems to be that the shape 
of the anharmonic potentials reflects the imposition of conservation conditions of 
monopole and dipole quantities. We have no other guideline to express these 
conditions than the classical intuition, presented in section 3. However, it would 
seem worthwhile to examine whether the special type of weU-boundary, encoun- 
tered in that section, can be expressed in a continuous potential function. Such 
a treatment cannot be expected to offer a full solution, but it appears to provide 
meaningful claims on the form of the potential outside the bottom of the well. 

First consider the example of the conservation of the zeroth-moment in one 
dimension. We will refer to this case as Cr The index denotes the order of 
the moment, and the argument the dimension of space. 

The classical requirement that the integrated wave equals zero (cf. Eq. (11)) can 
now be combined with the integrated form of the wave equation. One obtains 
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for the interval [xl, x2]: 

2 E g) dx = t_ dx -Jxl a~,, Vcb dx. (29) 

Two issues are possible at this point. If one deals with a constant potential 
between infinite boundaries, as in the model of Sect. 3, Eq. (29) can be rearranged 
so as to show that ego(l) depends on the values the derivative takes at the 
boundaries. This confirms our previous conclusions. 

If on the other hand the interval [xl, x2] is stretched to infinity and some potential 
function is introduced, Eq. 23 takes the following form: 

B I ax = (30) 

This equation implies that the first derivative of the wave function vanishes at 
infinity and states that the integrated wave will only vanish when the wave 
function is orthogonal to the potential. 

For  ungerade modes, both integrals vanish by symmetry. Hence the conservation 
condition tends to force gerade modes to adopt a radial node pattern, which is 
equivalent to the inversion symmetry of the ungerade modes. However,  it is 
evident that such a "displaced" oscillator can only be realized for a constant 
potential between infinite walls. Indeed if a wave has a radial node so that its 
integral equals zero, the product of that wave function with a nodeless and 
continuous potential function will not display the same peculiar radial symmetry 
any more, unless the potential is constant. 

Orthogonality of a wave function to the potential is therefore a limiting case. 
Indeed it would be reached if the fundamental mode itself is congruent to the 
potential, assuming that the potential itself obeys the same Sturm-Liouville 
boundary condition as the wave functions [6]. In a quantum mechanical system 
the fundamental mode of a vibrating system can be said to probe this potential 
at a certain point in energy. 

However,  the limit where the potential is proportional to one of its own eigenfunc- 
tions offers a novel perspective since it allows one to characterize the potential 
itself by a differential equation. Using the parameter  form 

V = a + b ~ ( x )  (31) 

where a and b are independent parameters and 6(x) is the functional form, the 
statement that 0 itself is an eigenfunction leads to 

d 2 
dx20  + (a + b 0 ) ~ - E 6  -- 0. (32) 

In this equation a can be omitted without loss of generality since this merely 
shifts energies. Thus a second order non-linear differential equation is generated, 
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containing one parameter b and an eigenvalue E. Once 0 is obtained, a normal 
hamiltonian is available and other eigenfunctions can be generated. 

The space of eigenfunctions is thus divided into a singleton, the potential function 
4, itself, and a remainder space built on this potential. The singleton is separable 
because it has the unique reflective property of an eigenfunction, which is its 
own potential. 

We propose to call this equation the loop equation in quantum mechanics, 
recognizing the widespread interest of the purely mathematical principle of a 
concept that applies to itself, and in the hope that, although a limiting case, it 
will be helpful in designing anharmonic potentials. 

5.2. Solutions o]' the Loop Equation 

Closed form integration of Eq. (32) is possible, since the independent variable 
x is absent. In fact a similar equation was solved by Einstein in his treatment 
of the problem of perihelion shift (see Ref. [16]). Multiplying Eq. (32) by 2dO/dx 
one obtains after integration: 

(dO~ 2 z b ,3 dx] =7 q; - E 0 2  +c. (33) 

The constant c is the integration constant, to be determined from boundary 
conditions on dO/dx. 

Eq. (33) is a special case of the general elliptic equation, where the highest 
power present is the cube. It can be solved in general by means of elliptic 
functions of Jacobi [16]. As a first condition, we require dO/dx to be equal to 
zero at the origin. This simply means that the potential behaves harmonically 
at the origin. A linear anharmonicity would imply that the origin is unstable, as 
is the case for Jahn-Teller instabilities, which will not be discussed here. 

Using 0o as the value of 4; at the origin, c can now be eliminated. 

( dO'~ 2 = ~b ( ~ 3  - q~3) - E ( t ) 2  - t)20). (34) 
dx] 

The fundamental ls-mode,  having no radial nodes nor a periodic structure, Is 
realized for the eigenvalue E = 2bOo. In that case the result has the following form: 

0 = 0o sech z (kx) (35) 

where the scaling parameter k is a function of b, given by: 

b=-6k2/Oo or E = - 4 k  2. (36) 

Hence the potential takes the form: 

V = b0 = - 6 k  2 sech 2 (kx). (37) 
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V 

m. • 

Fig. 5. Fundamental bounded and unbounded s-modes of the loop equation ego(1 ) (cf. Eqs. (37), (38) 

If we would have put c = 0 in Eq. (33), the same eigenvalue E = - 4 k  2 would 
have yielded the unbound s-mode, with positive b 

V = 6k 2 cosech 2 (kx). (38) 

Fig. 5 presents the graphs of both functions. The potentials displayed in this 
figure bear great resemblance to trial functions studied by P6schl and Teller 
around 1930, in an evaluation of anharmonic oscillators [17]. Also Rosen and 
Morse [18] have devoted interest to this type of potentials. A more detailed 
survey will be presented in Sect. 6. 

5.3. The Generalized Loop Equation 
In conclusion to this section, the generalized loop equation in three dimensions 
for any Ath-order moment,  is presented. Using the earlier notation, this case is 
denoted ~ (3). 

Adopting spherical symmetry, the starting point is the radial wave equation for 
modes with angular quantum number A. 

Multiplying this equation with the radial operator r A and integrating over the 
interval [0, oo], one obtains: 

-A(A + l) I rXOdr+I rX+2V~Odr. (39) 

By partial integration this expression reduces to: 

f E. ,  o (40) 

Once again the generalized radial momentum operator appears (cf. Eq. (16)). 
Assuming the usual boundary behaviour Eq. (40) leads to the orthogonality of 
qb to the product rXV. The loop equation that will match this requirement 



420 A. Ceulemans and B. R. Hollebone 

simplifies to: 

d 2 

dr 2 
2(A +1) d~O_~b~O2_E ~ 

~ 0 .  
r dr 

(41) 

This is the general form of the loop equation in three-dimensional spherical 
symmetric space. Also one-dimensional conservation conditions follow this 
equation: ~o(1) corresponding to A = - 1 ,  and ~1(1) to A = 0. Cylindrical sym- 
metries might be incorporated as well. General solutions for this equation do 
not seem to be available in the literature. For A = 0, the differential operator in 
Eq. (41) has the usual form for radial spherical problems and the loop equation 
in that case is recognized as an example of the Lane-Emden equation in 
astrophysics [16]. However, no closed form integration of this equation seems 
to be published to date. 

Only for A = - 1  solutions could be obtained (see Sect. 5.2). However, this is 
also the only case where the singularity at the origin is avoided. 

6. A n h a r m o n i c  Oscil lators 

6.1. The P6schl-Teller Potentials 

The potential considered by P6schl and Teller [17, 19] (P.T.) is a linear combina- 
tion of both s-mode solutions of the loop equation. Using units of h2/2m it can 
be expressed as follows: 

V = K (K -- 1)k 2 cosech 2 (kx) -A (A + 1)k 2 sech 2 (kx). (42) 

The constants K and A characterize respectively the repulsive and attractive 
parts of the potential, k is a typical scaling factor for the independent variable. 

The loop equation produces specific values of K and A which we will identify as 
K = - - 2 ,  A = +2 .  

The P.T.-potential is a displaceable oscillator in that the eigenvalues of the 
resulting wave functions only depend on the difference between K and A. Keeping 
this difference fixed while changing the parameters will not affect eigenvalues, 
whereas eigenfunctions can be modified at will. In the limiting case, where both 
K and A are very large, while keeping a finite net attractive difference between 
the two, the P.T.-potential shape is displaced towards the Morse curve [17]. 
(The actual Morse potential is the leading term in the exponential expansion of 
Eq. (42).) 

Apparently previous reasons for studying these functions are related to the fact 
that closed form integration of the resulting wave equation poses no difficulties. 
Detailed treatments of the various P.T.-type potentials are offered by FliJgge [20]. 

However, these solutions also are attractive from another point of view. They 
can be related to harmonic functions. The distortional event that modifies 
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harmonic oscillators to anharmonic potentials can thus be described more 
adequately. 

6.2. The Attraction Potential 

Consider the hamiltonian for a fully attractive potential, characterized by 

d 2 
= dx 2 A(A + 1)k 2 sech 2 (kx). (43) 

The transformation kx =- tanh- l (cos  0) compresses the entire range of the 
independent variable x to the [0, 7r]-interval in an angular variable 0. Applying 
this transformation to the above hamiltonian, the wave equation values the 
following form: 

( 1 d(s in~-~0)-A(A+l)  E ) 
sin 0 dO k2 sin2 ~ ]qb) = 0. (44) 

Substituting E =-k2rn  2 in Eq. (44), and assuming that h and mx are integers, 
the transformed equation is readily recognized as the associated Legendre 
equation, describing the | part of the spherical harmonics. 

In this transformed space the constant A of the P6schl-Teller equation adopts 
the role of angular quantum number. The energies represent the azimuthal 
quantizations. 

In a [hmx } notation, the ground state thus must be written [AA }. The total number 
of bound states equals (A +1), including the ]h0) state with zero energy. The 
capacity of this potential hole to contain bounded states is thus a finite number. 
Interestingly the original loop equation yielded h = 2 (Eq. (37)). In this case only 
three states are to be found. The potential itself is the [d2} state. The first excited 
state corresponds to [dl). This is an "ungerade" state in x-space, corresponding 
to change of sign upon reflection through a horizontal plane of symmetry in 
0-space. Finally the zero energy state is describable as [dz2}. As noticed earlier, 
no other bound gerade modes can be present in this case, since that would 
violate the orthogonality condition in Eq. (30). Solutions can now be expressed 
in terms of associated Legendre functions, and normalized in 0-space 

[Am~} ( - 1 ) ~ [ 2 2 + 1  h----rn'~] 1'2 = P~'~ (- tanh (kx)) 
h +mx3 

with: 

(-1)~ sech~ (kx) ~ [d  d 1 ~+'~ (tanh 2 (kx) 1) ~. P ~  (- tanh (kx)) = ~ tanh (kx)J 

(45) 

These equations are conformal to Condon & Shortley phase conventions [21] 
(m~ -> 0). 
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Similarly, the angular ladder operators can be defined 

d 
5~ + = -cosh  (kx) d--~x)-rnx sinh (kx) 

d 
2?- = cosh (kx) d -~x ) -  rnx sinh (kx). (46) 

The operators act as usual shift operators on the IArnx> functions as defined in 
Eq. (45). These functions are normalized in 0-space. The volume element in this 
space is transformed in an interesting way: 

d(cos 0) = - d ( t anh  (kx)) = -sech 2 (kx) d(kx). (47) 

Hence the volume element of the angular space incorporates the potential of 
the anharmonic oscillator. The potential thus really holds the metric of the 
x-space. As a consequence, functions that are normalized in 0 are characterized 
by the same (un-normalized) expectation value (dp I Vldp) in x-space. 

Other interesting generalizations are possible as well. Associated Legendre 
orbitals are characterized by the following recurrence relations [22] in A 

(z 2 - 1 )  dP'~(z------~)= Aze~(z ) - ( ,~  + m~)P~• (z) 
dz 

(z 2 - 1) dP'~• (z) = (A - mx)P"~ ~ (z) - AzP"~• (z). (48) 
dz 

With z = - t anh  (kx) these equations supply raising and lowering operators for 
A, that leave mx constant 

d 
M- = A tanh (kx) with: M-P'~ ~ = (A +mx)pr~• 

d(kx) 

d 
M += - h  tanh (kx) with: M+P'~• = (h -rnx)P'~ ~. (49) 

d(kx) 

These operators factorize the hamiltonian as follows: 

~r = ~ + .  ~ -  - ; t  2. (50) 

Fig. 6 summarizes these results. It can be seen that the whole manifold of angular 
momentum space can be transferred to anharmonic oscillators. It is known that 

s p d f 

- ( m X )  2 

= k 

g 

Fig. 6. Effects of raising and lowering operators for the attraction P.T.-potential 
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the group U(3) allows lowering of A beyond zero. Then states correspond to 
waves that are unbound at the origin, and are therefore rejected from the 
solutions of the wave equation [20]. In our opinion the repulsive states explore 
this extended space. 

6.3. The Repulsive States 

The repulsive part of the P.T.-Hamiltonian will be written in a form that 
underlines the angular momentum origin of K 

d 2 
H = - ~ x 2 +  (--K)(--K + 1)k 2 cosech 2 (kx). (51) 

The minus sign (with K > 0) is used to distinguish the repulsive and attractive 
states. Repulsive states are thus denoted ]--KrnK). 

Solutions occurred as auxiliary functions in the study of the group of scattering 
states for hydrogen [23]. They can be written: 

sinh ~ (kx) d co (kx) cos (mK(kx)) (52) 

(see also Ref. [24]). 

Since these are continuum states m~ is not quantized. At infinity these functions 
have a n  oscillatory behaviour, due to the periodic cosine. As such these states 
cannot be combined with lAmA) states to form eigenstates of the full P.T.- 
potential. However,  they can be prepared in view of such a coupling. This 
requires the adhesion of the imaginary to inK. Hence:  

cos (im~(kx)) = cosh (m~(kx)). (53) 

By introducing hypergeometric functions [22], we have 

cosh (m~(kx)) = 2Fl(-mJ2, m~/2; 1/2; - s i n h  2 (kx)). (54) 

Using known quadratures, Eq. (52) can finally be transformed to 

]-Km~)--sinh ~ (kx)2Fl((K -m~)/2, (K +m~)/2 ;  K + 1/2; - s i n h  2 (kx)). (55) 

For mK= K the 2Fa-function equals 1 and hence: 

] - KK)--sinh ~ (kx). (56) 

If m~ is allowed to increase with even increments, the 2Fl-function takes the 
form of a finite power series in sinh 2 (kx), that is multiplied with the I-KK) 
fundamental.  

This is entirely analogous to the even attractive states. Their ground state is 
written 

IAA) - sech ~ (kx). (57) 
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Now decreasing mx with even numbers generates all other gerade modes, which 
can be written: 

sechX(kx)zFl((ml- A)/2, -(mx +A)/2; 1/2; -s inh 2 (kx)). (58) 

The repulsive states are unacceptable as such since they are divergent at infinity. 
In order to obtain net attractive states, they have to be coupled with appropriate 
attractive states, so that a convergent result is obtained. 

6.4. The Descent in Radial Symmetry 

A spherically symmetric potential divides three-dimensional space into two 
subspaces of radial and angular coordinates. These are complementary and the 
nodal pattern in the combined space is a unique characteristic of each individual 
eigenfunction. 

Symmetry in angular space has a clear geometric meaning: the infinitesimal 
operators that characterize the angular symmetry represent infinitesimal rotations 
on a sphere. Radial symmetry cannot possibly be characterized in an analogous 
sense, since the potential would not allow infinitesimal displacements in radial 
space, unless it is constant. However, whenever degeneracies between radial 
and angular nodal patterns are observed, radial symmetry can acquire a 
geometrical sense in a transformed space, where it is categorized as a generalized 
angular coordinate. This is the case for the harmonic oscillator in three dimensions 
where one radial node is equivalent to two angular nodal planes. The U(3) 
symmetry of this hamiltonian was demonstrated by Baker [16] using the trans- 
formed space of the boson-operators. In the hydrogen problem one radial node 
is equivalent to one angular nodal plane. The symmetry group for this equivalence 
was established by Fock [24] as the orthogonal group in four dimensions 0(4). 

Since at present we have been dealing with uni-dimensional problems, which 
cannot be mapped directly in three dimensions (see Sect. 5.3), recurrence to the 
above concept of radial symmetry could not be made. However, the symmetry 
of P.T.-potentials can easily be established by referring to dynamical groups. 
This involves a mapping of states into components of a single representation of 
a continuous group. Ladder operators that connected different eigenstates, 
become symmetry operators in the generalized space. This is the concept of 
radial symmetry, that we will be referring to. 

As shown (Sect. 6.2) attraction potentials, characterized by integer values of A 
allowed a straightforward transform to the space of spherical harmonics. All 
states could be mapped on lama) components of this space. Evidently, the sum 
of all components for a given potential well transforms as a totally symmetric 
quantity in the harmonic space. Moreover, we claim that (suitably prepared) 
repulsive states can also be accommodated in this space. 

However a generalized P.T.-potential will involve the coupling of several attrac- 
tive and repulsive potentials and thus break the symmetry of this angular space. 
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A more elaborate treatment of this coupling and the descent in symmetry it 
represents, shall be presented in further studies. 

7. Conclusions 

A single particle representation of vibrational states has been described. The 
assignments of spurious centre-of-mass motions in such a scheme, leads to the 
removal of the mass-dipole. Molecular normal modes can be described in this 
representation. So far [1] only angular quantum numbers have been used. The 
introduction of radial information might provide a useful extension of the 
subduction process, especially in cluster compounds, such as boron hydrides, 
where more than one coordination shell is present. Vibronic coupling implies a 
product of the vibrational representations with the momentum representation 
of electronic motions. 

We observed that conservation conditions impose very strict boundary conditions 
on potential walls of finite square box models. An attempt was made to examine 
continuous potentials that would incorporate these boundary conditions. The 
resulting loop equations in general describe a dissipation from a finite source 
under limiting conditions, and have their analogs in kinetics and stellar physics. 
We suggest that they might offer valuable potential shapes for anharmonic 
oscillators. The presently investigated P.T.-potentials are especially defective in 
the long-range region. Probably, consideration of the ~l(1)-loop equation might 
suggest an improved description of this region. 
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